
Quicksort

MergeSort, while it is clearly superior to the
O(n2) sorting algorithms, suffers from two flaws

• the need to pass an additional temp array
to the sorting algorithm. This is a pain at
anytime, and could be a major problem if
the array you are sorting is so big that you
have trouble allocating another array of the
same size.

• all of the copying back and forth between
the data array and the temp array.

Quicksort is another divide-and-conquer
algorithm that makes up for these deficiencies.
You must be careful implementing QuickSort;
small changes in the code can lead to incorrect
sorts. When implemented correctly it is one of
the best sorting algorithms known.

Quicksort was invented by the British computer
scientist Tony Hoare in 1960. His original
implementation was in Fortran and the code was
so complex most people couldn't follow it. Once
recursion became available (in ALGOL 60) Hoare's
recursive version was so simple most people
didn't take it seriously.

Quicksort was a featured part of two very
important standard systems: it was a C-language
library function in the original Unix
implementation, and it was the sorting algorithm
used in the original Java implementation.

The idea behind QuickSort is simple. To sort the
elements of array A between indices first and last:

a) Choose one of the elements of the array to be the
"pivot" value. The algorithm works correctly
regardless of which element you choose.

b) Rearrange the array so that elements that are less
than the pivot come before it, and the elements
that are greater than or equal to the pivot come
after it. The pivot must then be in its final
location. Suppose that is at index i.

c) Recursively sort the elements between first and
i-1, and the elements between i+1 and last.

If there are n elements in the list the rearranging
can be done in one pass with at most n steps.

Note that while the algorithm will correctly sort
regardless of which pivot value is chosen, the
choice of pivot does make a difference.

Suppose the pivot value we choose happens to be
the lowest element. Then one of the recursive
calls gets an array with no elements and the other
gets all but one of the elements. If the array
happens to be already sorted and we choose the
leftmost entry to be the pivot, this will happen at
each step and we end up doing n recursive calls,
sorting n elements, (n-1) elements, (n-2)
elements, and so forth element. The partitioning
process takes n + (n-1) + (n-2) + ... steps, which
altogether gets us O(n2) steps.

So in the worst case QuickSort is O(n2). If that was
the end of the story we wouldn't be interested in
it.

Think about the more typical case -- unless we are
really unlucky, most of the time the pivot value
should be around the middle of the data. This
means that the recursive calls will each be to
about half of the data. Just as with MergeSort, we
would expect QuickSort to run in time O(n*log(n))
in the typical case. Even better than MergeSort,
QuickSort doesn't have to copy all of the data on
each step. In practice QuickSort tends to run
significantly faster than MergeSort on typical data.

There are some things we can do to guard against
especially unfavorable cases. Sorted, reverse-
sorted, and nearly-sorted data all occur more often
than you might think; using the first or last element
of the list as the pivot doesn't do well in these
cases. An easy remedy for this is to use the middle
of the array as the pivot value. Some authors
recommend taking the median of the left end, the
right end, and the middle value. Steps like this
don't avoid the worst-case O(n2) behavior, but they
insure that the algorithm reaches its worst case
only in very specific and unlikely situations.

The partition step of the algorithm needs to be coded
carefully but the idea behind it is easy.

Suppose we start with the following data and choose
as the pivot the middle value:

[23 3 9 7 14 8 7 12 6]

Start by interchanging the pivot with the last
element, so it is out of the way. Let i and j be the first
and last indices in the array

pivot

[23 3 9 7 6 8 7 12 14]

pivoti j

Next, we increase i and decrease j until i is
the index of a value greater than the pivot
and j is the index of a value less than the
pivot: [23 3 9 7 6 8 7 12 14]

i j pivot

Now swap the entries at indexes i and j:

[12 3 9 7 6 8 7 23 14]

i j pivot

We repeat this step until i and j cross. For this
example that happens immediately, since all of
the elements with index less than j are less than
the pivot:

i j pivot

[12 3 9 7 6 8 7 23 14]

We swap the element at index i with the pivot (in
the last entry) and recursively sort the portion of
the array before index i and the portion of the
array after index i. The latter is only one element,
so there is nothing to do. For the portion before i
we have:

[12 3 9 7 6 8 7 14 23]

pivot

[12 3 7 7 6 8 9 14 23]

i j pivot
We move i and j towards each other until
the value at index i is greater than the pivot
and the value at j is less:

[12 3 7 7 6 8 9 14 23]

i j pivot

We swap the values at i and j:
[8 3 7 7 6 12 9 14 23]

i j pivot

Again we move indices i and j inward; they cross at the
element 12, which we swap with the pivot element:

[8 3 7 7 6 9 12 14 23]

i j

We repeat this to sort the two portions [8 3 7 7 6] and
[12]

On the next slide is the complete code for
QuickSort:

private static <E extends Comparable<? super E>> void
QuickSort(E[] A, int first, int last) {

if (first < last) {
int mid = (first+last)/2;
E pivot = A[mid];
swap(A, mid, last);
int i = first;
int j = last;
while (i < j) {

while (A[i].compareTo(pivot) < 0)
i += 1;

while (i < j && pivot.compareTo(A[j]) <= 0)
j -= 1;

if (i < j)
swap(A, i, j);

}
swap(A, last, i);
QuickSort(A, first, i-1);
QuickSort(A, i+1, last);

}
}

